Eminescu impact structure: Insight into the transition from complex crater to peak-ring basin on Mercury
نویسندگان
چکیده
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter ( 125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater sizefrequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
The Origin of Peak-ring Basins: Observational Framework and Path Forward in Constraining Models of Impact-basin Formation
Introduction: Impact basins provide windows into a planetary body's crustal structure and stratigraphy; however , interpreting the origin of impact basin materials requires constraints on the processes controlling basin formation and morphology. Peak-ring basins (exhibiting a rim crest and single interior ring of peaks) provide important insight into the basin-formation process, as they are tra...
متن کاملThe transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin formation models
The study of peak-ring basins and other impact crater morphologies transitional between complex craters and multi-ring basins is important to our understanding of the mechanisms for basin formation on the terrestrial planets. Mercury has the largest population, and the largest population per area, of peak-ring basins and protobasins in the inner solar system and thus provides important data for...
متن کاملNew morphometric measurements of craters and basins on Mercury and the Moon from MESSENGER and LRO altimetry and image data_ An observational framework for evaluating models of peak-ring basin formation
Peak-ring basins are important in understanding the formation of large impact basins on planetary bodies; however, debate still exists as to how peak rings form. Using altimetry and image data from the MESSENGER and LRO spacecraft in orbit around Mercury and the Moon, respectively, we measured the morphometric properties of impact structures in the transition from complex craters with central p...
متن کاملThe transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and...
متن کاملGRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and...
متن کامل